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ABSTRACT

The contributions of measurement and experimentation to the

state-of-the-art in software engineering are reviewed. The role of
measurement in developing theoretical models is discussed, and concerns for

* reliability and validity are stressed. Current approaches to measuring

. software characteristics are presented as examples. In particular, software

complexity metrics related to control flow, module interconnectedness, and
Halstead's Software Science are described. The use of experimental methods

in evaluating cause-effect relationships is also discussed. Example
programs of experimental research which investigated conditional statements

* and control flow are reviewed. The conclusion argues that many advances in

software engineering will be related to improvements in the measurement and

experimental evaluation of software techniques and practices.

Keywords: Software engineering, Measurement theory, Software experiments,
Software science, Structured programming, Software complexity, Software

metrics, Control flow, Experimental methods, Modern programing practices.
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INTRODUCTION

The magnitude of costs involved in software development and maintenance

magnify the need for a scientific foundation to support programming

standards and management decisions. The argument for employing a particular

software technique is more convincing if backed by experiments demonstrating

its benefit. Rigorous scientific procedures must be applied to studying the
development of software systems if we are to transform programming into an

engineering discipline. At the core of these procedures is the development
of measurement techniques and the determination of cause-effect

relationships.

A commitment to measurement and experimentation hopefully begins by

focusing on the phenomenon we are trying to explain. Rather than beginning
by counting or experimentally manipulating various properties of software,

we should first determine what software-related task we wish to understand.

Modeling the processes underlying a software task helps identify properties

of software that affect performance. Once the process is modeled, we can

dissect it with all manner of scientific procedures.

The article on reliability by Musa62 in this issue presents a rigorous

approach to modeling a software phenomenon. He specifies a set of assump-

tions about software failures that guide his development of a quantitative
measure. Yet, Musa does not stop with a description of his measure. He

takes the critically important step of validating his equation with actual
data. Further, he does not define his measure on the basis of a one-shot

study, but continues to test and refine his model against new data sets.

Statements that a software product has a mean-time-between-failure of
48 hours or satisfies specified timing constraints are grounded in the

established measurement disciplines of reliability22,62 and performance

evaluation. Other important attributes of software, such as its compre-

hensibility to programmers, have not been adequately defined. A model of how

software characteristics affect programmer performance should underlie

software engineering techniques which purport to make code more readable or
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reduce the mental load of the programmer. The empirical study of such a

model requires a disciplined application of measurement and experimental

methods.

I will discuss several important principles in measurement and

experimentation and review their application in research on how certain

software characteristics make a program difficult for a programmer to

understand and work with. I will begin with a discussion of how measurement

is fundamental to the development of a scientific discipline.

Science and Measurement

Margenau53  argues that the various scientific disciplines can be

classified by the degree to which their analytical approach is theoretical

rather than correlational. The correlational approach explains phenomena by

the degree of relationship among observable events. The theoretical

approach attempts to explain these relationships with principles and

constructs which are often several levels of abstraction removed from

relationships among empirical data.

Torgerson88 believes that "the sciences would order themselves in

largely the same way [as Margenau's ordering] if they were classified on

the...degree to which satisfactory measurement of their important variables

has been achieved" (p. 2). We know considerably more about measuring

electricity or sound than we do about measuring the comprehensibility of

software. Consequently, correlational studies are more characteristic of

the behavioral than the physical sciences. According to Lord Kelvin 46 :

When you can measure what you are speaking about, and express it

in numbers, you know something about it; but when you cannot

measure it, when you cannot express it in numbers, your knowledge

is of a meager and unsatisfactory kind: it may be the beginning

of knowledge, but you have scarcely in your thoughts advanced to

the stage of science.

The development of scientific theory involves relating theoretical



2 constructs to observable data. Figure 1 illustrates two levels of

theoretical modeling as discussed by Margenau and Torgerson. In a

well-developed science constructs can be defined in terms of each other and

are related by formal equations (e.g., force - mass x acceleration). A
model of relationships among constructs becomes a theory when at least some

constructs can be operationally defined in terms of observable data.

In a less well-developed science, relationships between theoretical and

operationally defined constructs are not necessarily established on a formal

mathematical basis, but are logically presumed to exist. Such

relationships among operationally defined constructs are often described by

correlation or regression coefficients, while their relationships to

non-operetionally defined theoretical constructs are typically presented in

verbal arguments. These presumed relationships are difficult to test,

because negative results can be as easily attributed to a poor operational

definition of the constructs as to an incorrect modeling of the

relationships. In the next section, we will find presumed relationships

existing between the hypothetical construct of program comprehensibility and

its operational definition in software characteristics.

The development of an operational definition (i.e., the relating of a

theoretical construct to observable data) requires a system of measurement.
As described by Stevens84 :

... the process of measurement is the process of mapping empirical

properties or relations into a formal model. Measurement is

possible because there is a kind of isomorphism between (1) the

empirical relations among properties of objects and events and (2)
the properties of the formal game in which numerals are the pawns

and operators the moves. (p. 24)

Measurement does not define a construct, rather it quantifies a property of

the construct. The "brightness" of light and the "intelligence" of

3
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programmers are represented with a number system. Numbers are that

fortunate development which relieves us of reporting the size of a software

system with several hundred thousand pebbles.

The value of any empirical study will depend on the reliability and

validity of the data. Reliability concerns the extent to which measures are

accurate and repeatable 66. The less random error associated with a

measurement, the more reliable it becomes. Two important factors underlying

reliability are the internal consistency and the stability of the measure.

If a measure Is computed as the composite of several other measures, as in

adding question scores to obtain an overall test score, then it is important

to demonstrate that this composite is internally consistent. That is, all

of the elementary measurements must be assessing the same construct and must

be interrelated. If unrelated elements are added into a composite then it

is difficult to interpret the resulting score.

The other aspect of reliability, stability, implies thdt an equivalent

score would be obtained on repeated collections of data under similar

circumstances. The reliability of a measure limits the strength of its

relationships to other measures. However, a reliable measure may not be a

valid measure of a construct.

Validity has many interpretations, and all seem to concern whether a

measure represents what it was designed to assess. Generally, three types
of validity are identified which differ in their implications for the

measure's ultimate use. Often validity will depend on the thoroughness with

which a domain of interest has been covered. This concern for content

validity is important for the software quality metrics to be discussed in
the next section. Content validity requires an inclusive definition of the

domain of interest, such as a definition of the phenomena covered under
software complexity. A measure is often said to be "face valid" if it

appears to broadly sample the content domain.

Predictive validity involves using the measure to predict the outcome

of some event. For instance, does knowing something about software

complexity allow one to predict how difficult a program will be to modify?
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Predictive validity is determined by a relationship between the measure and

a criterion. A number of predicti.ve validity studies will be reported in
the next section.

In the. less well-developed sciences the skill with which we

operationally define constructs is critical in theory building. Construct
validity concerns how closely an operational definition yields data related

to an abstract construct. Construct validity is of immediate concern in

developing software measurements, since many of our models do not rest on

mathematical analysis.

Measurement consists of assigning numbers to represent the different

states of a property belonging to the object under study. Relationships
among these different states determine the type of measurement scale which

should be employed in assigning numbers. Stevens84 describes four types of

scales which are presented in Table 1. The important consideration with

scales is that we only operate on numbers in a way which faithfully
represents potential events among the properties they measure. That is, in

considering jersey numbers (a nominal scale) we would not expect to add a
fullback from Texas (#20) to a tackle from Harvard (#79) and end up with a

Yugoslavian placekicker (#99). The operation of addition is limited to

interval and ratio scales.

The most desirable scales are those which possess ratio properties,

because of the broader range of mathematical transformations which can be
legitimately applied to such data. The type of measurement scale also

limits the type of statistical operations that can be sensibly applied in

analyzing data. It makes little sense to add up all the jersey numbers,

divide by the total number of players, and then claim that the average

player is a center (#51). Since statist4cal techniques make no assumptions
about the type of scale employed, this problem is one in measurement rather

than statistical theory.

6



TABLE 1

TYPES OF MEASUREMENT SCALES

APPROPRIATE
SCALE DESCRIPTION EXAMPLES

OPERATIONS"

SEX, RACE
NOMINAL , CATEGORIES JERSEY NUMBERS

HARDNESS OF MINERALS
ORDINAL RANK ORDERINGS RANK IN CLASS

EQUIVALENT INTERVALS TEMPERATURE (F° AND Co)
INTERVAL BETWEEN NUMBERS CALENDAR TIME

EQUIVALENT INTERVALS TEMPERATURE (K0), HEIGHT
RATIO

AND ABSOLUTE ZERO LINES OF CODE

" THE OPERATIONS LISTED FOR EACH SCALE ARE APPROPRIATE
FOR ALL SCALES LISTED BENEATH IT.

.Jl . . ..... 7



Improved measurement will result from concentration on what we really

ought to measure rather than what properties are readily countable. The
more rigorous our measurement techniques, the more thoroughly a theoretical

model can be tested and calibrated. Thus, progress in a scientific basis

for software engineering depends on improved measurement of the fundamental

constructs45 .

8
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MEASUREMENT OF SOFTWARE CHARACTERISTICS

Uses for Software Metrics

Measurements of software characteristics can provide valuable

information throughout the software life cycle. During development

measurements can be used to predict the resources which will be required in

future phases of the project. For instance, metrics developed from the

detailed design can be used to predict the amount of effort that will be

required to implement and test the code. Metrics developed from the code

can be used to predict the number of errors that may be found in subsequent

testing or the difficulty involved in modifying a section of code. Because

of their potential predictive value, software metrics can be used in at

least three ways:

1. Management information tools - As a management tool, metrics

provide several types of information. First, they can be used to

predict future outcomes as discussed above. Measurements can be

developed for costing and sizing at the project level, such as in

the models proposed by Freiman and Park33 , Putnam69 , and

Wolverton93 . Other models have been developed for estimating

productivity32 ,89 . Such metrics allow managers to assess

progress, future problems, and resource requirements. If these

metrics can be proven reliable and valid indicators of development

processes, they provide an excellent source of management

visibility into a software project.

2. Measures of software quality - Interest grows in creating

quantifiable criteria against which a software product can be

judged60 . An example criterion would be the minimally acceptable

mean-time-between-failures. These criteria could be used as

either acceptance standards by a software acquisition manager or

as guidance to potential problems in the code during software

validitlon and verification90 .
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3. Feedback to software personnel - Elshoff27 has used a software

complexity metric to provide feedback to programmers about their
code. When a section grows too complex they are instructed to

redesign the code until metric values are brought within

acceptable limits.

The three uses described above suggest a difference between measures of

process and product. Measures of process would include the resource
estimation metrics described as potential management tools. Measures of

cost and productivity quantify attributes of the development process.
However, they convey little information about the actual state of the

software product. Measures of the product represent software charac-
teristics as they exist as a given time, but do not indicate how the

software has evolved into this state. Measures used for feedback to
programmers,or as quality criteria fall within this second category.

Belady5 argues that it will be difficult to develop a metric which can

represent both process and product. Development of such a metric or set of

metrics will require a model of how software evolves from a set of

requirements into an operational program. Charting the sequential phases of

the software life cycle will not provide a sufficient model. Some progress

is being made on system evolution by Lehman and his colleagues at Imperial

College in London7 ,9 . 4 7, 49 and is discussed by Lehman48 -n this issue. In

the remainder of this section, I will deal with measures of product rather

than process.

Omnibus Approaches to Quantifying Software

There have been several attempts to quantify the elusive concept of

software quality by developing an arsenal of metrics which quantify numerous

factors underlying the concept. The most well-known of these metric systems

are those developed by Boehm, Brown, Kaspar, Lipow, MacLeod, and Merrit1l,

Glb35 , and McCall, Richards, and Walters55. The Boehm et al. and McCall et

al. approaches are similar, although differing in some of the constructs and

metrics they propose. Both of these systems have been developed from an

intuitive clustering of software characteristics (Figure 2).

10
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The higher level constructs in each system represent 1) the current

behavior of the software, 2) the ease of changing the software, and 3) the

ease of converting or interfacing the system. From these primary concerns

Boehm et al. develop seven intermediate constructs, while McCall et al.
identify eleven quality factors. Beneath this second level Boehm et al.

create twelve primitive constructs and McCall et al. define 23 criteria.
For instance, at the level of a primitive construct or criterion both Boehm

et al. and McCall et al. define a construct labeled "self-descriptiveness".

For Boehm et al. this construct underlies the intermediate constructs of

testability and understandability, both of which serve the primary use of

measuring maintainability. For McCall et al. self-descriptiveness underlies

a number of factors included under the domains of product revision and

transition.

Primitive constructs and criteria are operationally defined by sets of

metrics which provide the guidelines for collecting empirical data. The

McCall et al. system defines 41 metrics consisting of 175 specific elements.

Thus, the metrics themselves represent composites of more elementary

measures. This proliferation of measures should ultimately be reduced to a

manageable set which can be automated. Reducing their number will require

an empirical evaluation of which metrics carry the most information and how

they cluster. There are a number of multivariate statistical techniques

available for such analyses6l.

No software project can stay within a reasondble budget and maximize

all of the quality factors. The nature of the system under development will

determine the proper weighting of quality factors to be achieved in the

delivered software. For instance, reliability was a critical concern for

Apollo space flight software where human life was constantly at risk. For

business systems, however, maintainability is typically of primary

importance. In many real-time systems where space or time constraints are

critical, efficiency takes precedence. However, optimizing code often
lowers its quality as indexed by other factors such as maintainability and

portability. Figure 3 presents a tradeoff analysis among quality factors

performed by McCall et al.55

12
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The omnibus approach to metric development had its birth in the need

for measures of software quality, particularly during system acquisition.
However, the development of these metrics has not spawned explanatory theory

concerning the processes affected by software characteristics. The value of
these metric systems in focusing attention on quality issues is substantial.

However, there is still a greater need for quantitative measures which

emerge from the modeling of software phenomena. Much of the modeling of

software characteristics has been performed in an attempt to understand
software complexity.

Software Complexity

The measurement of software complexity is receiving increased

attention, since software accounts for a growing proportion of total

computer system costs1O. Complexity has been a loosely defined term, and

neither Boehm et al. nor McCall et al. included it among their constructs of

software quality. Complexity Is often considered synonymous with

understandability or maintainability.

Two separate focuses have emerged in studying software complexity:

computational and psychological complexity. Computational complexity relies

on the formal mathematical analysis of such problems as algorithm efficiency

and use of machine resources. Rabin 70 defines this branch of complexity as
"the quantitative aspects of the solutions to computational problems" (p.
625). In contrast to this formal analysis, the empirical study of

psychological complexity has emerged from the understanding that software

development and maintenance are largely human activities91 . Psychological

complexity is concerned with the characteristics of software which affect

programmer performance.

The investigation of computational and psychological complexity has

been carried on without a unifying definition for the construct of software

complexity. There do, however, seem to be common threads running through

the complexity literature19 which suggest the following definition:

14



Complexity is a characteristic of the software interface which

influences the resources another system will expend or commit
while interacting with the software. (p. 102)

Several important points are implied by this definition. First, the

focus of complexity is not merely on the software, but on the software's

interactions with other systems. Complexity has little meaning in a vacuum;

it requires a point of reference. This reference takes meaning only when

developed from other systems such as machines, people, other software

packages, etc. It is these systems that are affected by the "complexity" of

a piece of software. Worrying about software characteristics in the absence
of other systems has merit only in an artistic sense, and measures of
"artistic" software are quite arbitrary. However, when there is an external

reference (criterion) against which to compare software characteristics, it

becomes possible to operationally define complexity.

Second, explicit criteria are not specified. This definition allows

mathematicians and psychologists to become strange bedfellows since it does
not specify the particular phenomena to be studied. Rather, this definition

steps back a level of abstraction and describes the goal of complexity
research and the reference against which complexity takes meaning.

Complexity is an abstract construct, and operational definitions only
capture specific aspects of it.

The second point suggests the third: complexity will have different

operational definitions depending on the criterion under study. Operational
definitions of complexity must be expressed in terms which are relevant to

processes performed in other systems. Complexity is defined as a property

of the software interface which affects the interaction between the software

and another system. To assess this interaction, we must quantify software
characteristics which are relevant to it. A model of software complexity

implies not only a quantification of software characteristics, but also a

theory of processes in other systems. Thus, the starting point for

developing a metric is not an ingenious parsing of software characteristics,
but an understanding of how other systems function when they interact with

software.



The following steps should be followed in modeling an aspect of

software complexity:

1) Define (and quantify) the criterion the metric will be developed

to predict.

2) Develop a model of processes in the interacting system which will

affect this criterion.

3) Identify the properties of software which affect the operation of

these processes.

4) Quantify these software characteristics.

5) Validate this model with empirical research.

The importance of this last point cannot be overemphasized. Nice theories

become even nicer when they work. Preparing for the rigors of empirical
evaluation will probably result in fewer metrics and tighter theories.

Results from validation studies make excellent report cards on the current

state-of-the-art.

Belady6  has categorized much of the existing software complexity

literature. First, he distinguishes different software characteristics

which are measured as an index of complexity: algorithms, control

structures, data, or composites of structures and data. In a second
dimension he describes the type of measurement employed: informal concept,

construct counts, probabilistic/statistical treatments, or relationships
extracted from empirical data. Most research has concerned counts of

software characteristics, particularly control structures and composites of
control structures and data. I will review some of the complexity research

in these two areas and compare them to a system level metric.

16



Control Structures

A number of metrics having a theoretical base in graph theory have been

proposed to measure software complexity by assessing the control
flow8 ,17, 36,54,71,94. Such metrics typically index the number of branches or
paths created by the conditional expressions within a program. McCabe's
metric will be described as an example of this approach since it has
received the most empirical attention.

McCabe54 defined complexity in relation to the decision structure of a
program. He attempted to assess complexity as it affects the testability
and reliability of a module. McCabe's complexity metric, v(G), is the
classical graph-theory cyclomatic number indicating the number of regions in
a graph, or in the current usage, the number of linearly independent control
paths comprising a program. When combined these paths generate the complete
control structure of the program. McCabe's v(G) can be computed as the
number of predicate nodes plus 1, where a predicate node represents a
decision point in the program. It can also be computed as the number of
regions in a planar graph (a graph in regional form) of the control flow.
This latter method is demonstrated in Figure 4.

McCabe argues that his metric assesses the difficulty of testing a
program, since it is a representation of the control paths which must be
exercised during testing. From experience he believes that testing and
reliability will become greater problems in a section of code whose v(G)
exceeds 10.

Basili and Reiter4  and Myers64 have developed different counting
methods for computing cyclomatic complexity. These differences involved
counting rules for CASE statements and compound predicates. Definitive data
on the most effective counting rules have yet to be presented.
Nevertheless, considering alternative counting schemes to those originally
posed by the author of a metric is important in refining measurement
techniques.

17
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Evidence continues to mount that metrics developed from graphs of the

control flow are related to important criteria such as the number of errors

existing in a segment of code and the time to find and repair such
errors20,2873. Chen17 developed a variation of the cyclomatic number which
indexed the nesting of IF statements and related this to the

information-theoretic notion of entropy within the control flow. He

reported data from eight programmers indicating that productivity decreased

as the value of his metric computed on their programs increased. Thus, the

number of control paths appears directly or indirectly related to

psychological complexity.

Software Science

The best known and most thoroughly studied of what Belady6 classifies

as composite measures of complexity has emerged from Halstead's theory of

Software Science4 O,42 . In 1972, Maurice Halstead argued that algorithms

have measurable characteristics analogous to physical laws. Halstead

proposed that a number of useful measures could be derived from simple

counts of distinct operators and operands and the total frequencies of

operators and operands. From these four quantities Halstead developed

measures for the overall program length, potential smallest volume of an

algorithm, actual volume of an algorithm in a particular language, program

level (the difficulty of understanding a program), language level (a

constant for a given language), programming effort (number of mental

discriminations required to generate a program), program development time,

and number of delivered bugs in a system. Two of the most frequently

studied measures are calculated as follows:

V = (NI+N 2 ) log2 (01+n2 )

'l N2 (Ni + N2) log2 (l 1 + n2 )
E-

2n2

where V is volume, E is effort, and

19



nu

2 = number of unique operators

N2 = number of unique operands

N2 = total frequency of operators

N2 = total frequency of operands

Halstead's theory has been the subject of considerable evaluative

research3l. Correlations often greater than .90 have been reported between

Halstead's metrics and such measures as the number of bugs in a

program 8,18 ,30,34 ,67, programming time39 ,75 , debugging time20,51 , and

algorithm purity 14 ,26 ,41 .

My colleagues and I have evaluated the Halstead and McCabe metrics in a

series of four experiments with professional programmers. In the first two

experiments2l problems in the experimental procedures, a limit on the size

of programs studied, and substantial differences in performance among the 36
programmers involved in each suppressed relationships between the metrics

and task performance. In fact it did not appear that the metrics were any
better than the number of lines of code for predicting performance.

However, in the third experiment20 we used longer programs, increased the
number of participants to 54, and eliminated earlier procedural problems. We

found both the Halstead and McCabe metrics superior to lines of code for
predicting the time to find and fix an error in the program.

In the final experiment 75 , we asked nine programmers to each create

three simple programs (e.g., find the maximum and minimum of a list of

numbers) from a common specification of each program. The best predictor of

the time required to develop and successfully run the program was Halstead's
metric for program volume (Figure 5). This relationship was slightly

stronger than that for McCabe's v(G), while lines of code exhibited no

relationship.
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The datapoints circled in Figure 5 represent the data from a program

whose specifications were less complete than those of the other two programs

studied. The prediction of development time for this program was poor. We
have observed in other studies that outcomes are more predictable -on
projects where a greater discipline regarding software standards and

practices was observed58 ,5 9. This experiment suggests that better
prediction of outcomes may occur when more disciplined software development

practices (e.g., more detailed program specifications) reduce the often

dramatic performance differences among programmers.

In these experiments we found Halstead's and McCabe's metrics to be

valid measures of psychological complexity, regardless of whether the

program they were computed on was developed by the programmer under study or

by someone else. We concluded that there is considerable promise in using

complexity metrics to predict the difficulty programmers will experience in
working with software. Similar conclusions have been reached by Baker and

Zweben3 on an analytical rather than empirical evaluation of the Halstead

and McCabe metrics.

Halstead's metrics have proven useful in actual practice. For

instance, Elshoff27 has used these metrics as feedback to programmers during

development to indicate the complexity of their code. When metric values
for their modules exceed a certain limit, programmers are instructed to
consider ways of reducing module complexity. Bell and Sullivan8 suggest

that a reasonable limit on the Halstead value for length is 260, since they

found that published algorithms with values above this figure typically
contained an error.

Regardless of the empirical support for many of Halstead's predictions,

the theoretical basis for his metrics needs considerable attention.
Halstead, more than other researchers, tried to integrate theory from both

computer science and psychology. Unfortunately, some of the psychological
assumptions underlying his work are difficult to justify for the phenomena

to which he applied them. In general, computer scientists would do well to

Immediately purge from their memories:
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The magic number 7 + 2

* The Stroud number of 18 mental discriminations per second.

These numbers describe cognitive processes related to the perception or

retention of simple stimuli, rather than the complex information processing

tasks involved in programming. Broadbent1 2 argues that for complicated

tasks (such as understanding a program) the magic number is substantially

less than seven. These numbers have been incorrectly applied in too many

explanations and are too frequently cited by people who have never read the

original articles57,85. Regardless of the validity of his assumptions,

Halstead was a pioneer in attempting to develop interdisciplinary theory,

and his efforts have provided considerable grist for further investigation.

I nterconnectedness

Since the modularization of software has become an increasingly

important concept in software engineering68 , several metrics have been
developed to assess the complexity of the interconnectedness among the parts

comprising a software system7,56 ,63 ,65 ,95. For instance, Myers63 models
system complexity by developing a dependency matrix among pairs of modules

based on whether there is an interface between them. Although his measure
does not appear to have received much empirical attention, it does present

two important considerations for modeling complexity at the system level65.

The first consideration is the strength of a module; the nature of the

relationships among the elements within a module. The stronger, more
tightly bound a module, the more singular the purpose served by the

processes performed within it. The second consideration is the coupling
between modules; the relationship created between modules by the nature of

the data and control that is passed between them.

A primary principle of modular design is to achieve as much

independence among modules as possible. This independence helps to localize

the impact of errors or modifications to within one or a few modules. Thus,

the complexity of the interface between modules may prove to be an excellent

predictor of the difficulty experienced in developing and maintaining large
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systems. Myers' measure identifies data flow as a critical factor in

maintainability. Nevertheless, his measure has not been completely
operationally defined, and its current value is primarily heuristic. Yau

and his associates95 are currently working on validating a model of this
generic type. Unfortunately, little empirical evidence is available to

assess the predictive validity of such metrics.

The focus of metrics measuring the interconnectedness among parts of a L
system is quite different from those which measure elementary program
constructs or control flow. Metrics measuring the latter phenomena take a

micro-view of the program, while interconnectedness metrics speak to a
macro-level. An improved understanding of aggregating from the micro- to

the macro-level needs to be achieved. For instance, summing the Halstead
measures across modules leads to very different results than computing them

once over the entire program59 .

Interconnectedness metrics may prove more appropriate parameters for

macro-level models such as those which predict maintenance costs and
resources. Macro-level metrics may prove better because factors to which

micro-level metrics are more sensitive, such as individual differences among
programmers, are balanced out at the macro- or project level. Macro-level

metrics are less perturbed by these factors, increasing their benefit to an
overall understanding of system complexity and its impact on system costs

and performance.

Although we can quantify a software characteristic and demonstrate that

it correlates with some criterion, we have not demonstrated that it is a
causal factor influencing that criterion. An argument for causality

requires the support of rigorous experimentation. The experimental
evaluation of software characteristics is a small but growing research area.
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EXPERIMENTAL EVALUATION OF SOFTWARE CHARACTERISTICS

Cause-Effect Relationships

Most of the studies reported in the previous section do not demonstrate

cause-effect relationships between software characteristics and programmer
performance. That is, there were a number of uncontrolled factors in the

data collection environment which could have influenced the observed data.
These alternate explanations dilute any statement of cause and effect.

Although structural equation techniques25 ,44  allow an investigation of
whether the data are consistent with one or more theoretical models, a

causal test of theory will require a rigorously controlled experiment.

According to Cattel11 6:

An experiment is a recording of observations . . . made by defined

and recorded operations and in defined conditions followed by

examination of the data . . . for the existence of significant

relations. (p. 20)

Two important characteristics of an experiment are that its data

collection procedures are repeatable and that each experimental event result

in only one from among a defined set of possible outcomes43. An experiment

does not prove an hypothesis. It does, however, allow for the rejection of

competing alternative explanations of a phenomenon.

The confidence which can be placed in a cause-effect statement is

determined by the control over extraneous variables exercised in the

collection of data. For instance, Milliman and 158 reported a field study
in which a software development project guided by modern programming

practices produced higher quality code with less effort and experienced
fewer system test errors when compared to a sister project developing a

similar system in the same environment which did not observe these
practices. Although many of the environmental factors were controlled, an
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alternate explanation of the results was that the project guided by modern

practices was performed by a programming team with more capable personnel.

An important characteristic of behavioral science experiments is the

random assignment of participants to conditions29 . By removing any

systematic variation in the ability, motivation, etc. of participants across

experimental conditions, this method supposedly eliminates the hypothesis

that experimental effects are due to individual differences among

participants. Assigning a morning class to one condition and an afternoon

class to another condition does not constitute random assignment, since

students rarely choose class times on a random basis. However, if classes

are the unit of study, the problem can be solved by randomly assigning a

number of classes to each experimental condition. Random assignment has

been a problem in testing causal relationships in field studies on actual

software development projects.

There is often a conflict between what Campbell and Stanleyl5 describe

as the internal and external validity of an experiment. Internal validity

concerns the rigor with which experimental controls are able to eliminate

alternate explanations of the data. External validity concerns the degree

to which the experimental situation resembles typical conditions surrounding

the phenomena under study. Thus, internal validity expresses the degree of

faith in causal explanations, while external validity describes the

generalizability of the results to actual situations.

In software engineering research, rigorous experimental controls are

difficult to achieve on software projects and laboratory studies often seem

contrived. External validity is probably a greater problem in studying

process factors such as the organization of programming teams than in

studying software characteristics. That is, the environmental conditions

surrounding software development which are difficult to replicate in the

laboratory would probably have a greater effect on the functioning of

programming teams than on a programmer's comprehension of code.
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Reviews of the experimental research in software engineering have been

compiled by Atwood, Ramsey, Hooper, and Kullas2 and Shneiderman77 . Topics

which have been submitted to experimental evaluation include batch versus

interactive programming, programming style factors (e.g., indented listings,

mnemonic variable names, and commenting), control structures, documentation

formats, code review techniques, and programmer team organization. In
discussing experimental methods, I will focus on the evaluation of

conditional statements and control flow. These topics were not chosen
because they were believed to be more important than other subjects.

Rather, they were chosen because several programs of research have developed

around them and because the conditional statement has been a focus of

argument since it was originally assailed by Dijkstra23 in 1968. Control

statements have been a concern of the structured programming movement, and

the results reported here evaluate their most effective implementation.

The usability of control statements is important since they account for

a large proportion of the errors made by programmers59 ,96 . Control

structures are closely related to some of the metrics discussed in a

previous section, such as McCabe's cyclomatic number. Research will be
described here in a tutorial fashion to demonstrate the depth to which

experimental programs can investigate a problem.

Conditional Statements

Sime, Green, and their colleagues at Sheffield University have been

studying the difficulty people experience in working with conditional
statements. In their first experiment Sime, Green, and Guest8l compared the

ability of non-programmers to develop a simple algorithm with either nested

or branch-to-label conditionals. Nesting implies the embedding of a

conditional statement within one of the branches of another conditional.
Nested structures are designed to make this embedding more visible and

comprehensible to a programmer. Branch-to-label structures obscure the
j visibility of embedded conditions, since the "true" branch of a conditional

statement sends the control elsewhere in the program to a statement with a

I specified label.
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The conditional for the nested language was an IF-THEN-OTHERWISE

construct similar to conditionals used in Algol, PL/I, and Pascal. This

conditional construct is written:

IF [condition] THEN [process 1)

OTHERWISE [process 2)

The branch-to-label conditional was the IF-GOTO construct of Fortran and

Basic which Dijkstra23 considered harmful. This conditional is written:

IF [condition] GOTO Li

[process 2)

Li [process 1)

In both examples, if the condition is true, process 1 is executed; if it is

not true, process 2 is executed. A "condition" might be an expression such

as "X > 0", while a process might be one or more statements such as "X = X +

1". Participants used one of these micro-languages to build an algorithm

which organized a set of cooking instructions depending on the attributes of

the vegetable to be cooked.

Sime et al. found that participants using the GOTO construct finished Ii
fewer problems, took longer to complete them, and made more semantic (e.g., -l
logic) errors in building their algorithms than participants using the

IF-THEN-OTHERWISE construct. They concluded that the GOTO construct placed

a greater cognitive load on programmers by requiring that they both set and

remember the label to which a conditional statement might branch. Further,

programmers had to remember the various conditions which could branch to a

particular label. These conditions are potentially more numerous for a GOTO Ii

than for an OTHERWISE statement.

In a further study Sime, Green, and Guest82 questioned whether the

superiority of nested over branch-to-label construct would be maintained

when multiple processes were performed under a single branch of a condi-

tional. For instance, given a statement: i}

MAMMON. .



IF condition THEN process 1 AND process 2,

there are two ways a programmer may interpret its execution:

1) (IF condition THEN process 1) AND process 2, or

2) IF condition THEN (process 1 AND process 2).

In the first interpretation, process 2 is performed regardless of the state

of the condition, while in the second it is performed only if the condition

is true. Sime et al. believed it would be difficult for a programmer to
retain the scope of the processes to be performed within each branch of a

conditional statement. This difficulty would be especially acute when

conditionals were nested within each other.

Sime et als.' second experiment investigated different techniques for

marking the scope of the processes subsumed under each branch of a

conditional statement. In addition to the IF-GOTO conditional, they defined

a nested BEGIN-END and a nested IF-NOT-END representing two different

structures for marking the scope of each branch in nested conditionals

(Table 2). The BEGIN and END statements mark the scope of processes

performed under one branch of a conditional statement, while the IF-NOT-END

uses a more redundant scope marker by repeating the condition whose truth is.
being tested. In a strict sense, IF-NOT-END is the counterpart of the

IF-THEN-ELSE construct, while the BEGIN-END markers could be used under

either construct.

As in the previous experiment, non-programmers were asked to develop an

algorithm for each of five problems within 2 hours total. Sime et al.

found that more semantic (algorithmic) errors occurred in the IF-GOTO

language, while errors in the nesting languages were primarily syntactic

(grammatical). The BEGIN-END construct produced more syntactic errors and

only half as many successful first runs as the other constructs. Errors
were debugged ten times faster in the IF-NOT-END condition, which proved to

be the most error free construct.
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Results for semantic errors suggest that it is easier to keep track of

the control flow in a nested language. However, when multiple processes are
performed the use of scope markers often result in careless syntactic

errors. Syntactic errors are more likely to occur with the BEGIN-END than
in the IF-NOT-END constructs, because the redundancy of conditional

expressions In the latter make the placement of markers more obvious.

Differential results for the two types of errors offer some validity

for the syntactic/semantic model of programmer behavior developed by Shnei-
derman and Mayer78 . This model distinguishes between information which is

language specific (syntactic) and language independent (semantic). The

correct design of the algorithm is a semantic issue, while the grammatically

accurate expression of that algorithm in a language is a syntactic issue.

The structure of a language may simplify the design of an algorithm, but

make its expression more difficult. Obviously, a language design should

seek to simplify both the design and expression of an algorithm.

Based on the results of this second experiment, Sime, Green, and
Guest82 proposed that their memory load explanation be replaced with an

explanation that information is easier to extract from some languages than
others. They distinguished two types of information: sequence and taxon.

Sequence information involves establishing or tracing the flow of control
forward through a program. Taxon information involves the hierarchial

arrangement of conditions and processes within a program. Such information
is important when tracing backward through a program to determine what

conditions must be satisfied for a process to be executed. Sime et al.
hypothesized that sequence information is more easily obtained from a nested

language, while taxon information is more easily extracted from a nested
language which also contains the redundant conditional expressions.

Conceptually, taxon information can be determined without fully under-
standing the sequence of processes within a program, since not all branches

have to be examined in a backwards tracing.

In two subsequent studies Green37  validated these hypotheses in

research with professional programmers. Sequence information was more

easily determined from nested languages, although no differences were
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observed between the BEGIN-END and IF-NOT-END constructs. Backwards tracing

was performed much more easily with the IF-NOT-END construct. Green esti-
mated that the time required for backwards tracing was 15% less in IF-NOT-

END than in IF-GOTO conditionals.

It is important to recognize that program comprehension is not a uni-

dimensional cognitive process. Rather, different types of human information

processing are required by different types of software tasks. Green demon-

strated that certain constructs were more helpful for performing certain

software tasks. Software engineering techniques may differ in the benefits

they offer to different programming tasks, since they differ in the types of

human information processing that they assist.

Since the IF-NOT-END construct is not implemented in existing lan-

guages, Sime, Arblaster, and Green79 investigated ways to improve the use of

the BEGIN-END conditional markers. They developed a tool which would auto-

matically build the syntactic portions of a conditional statement once the

user chose the expression to be tested. In a second experimental condition,
they developed an explicit writing procedure for helping participants

develop the syntactic elements of a conditional statement. This procedure
involved writing the syntax of the outermost conditional first, and then

writing the syntax of conditionals nested within it. In the final condition

participants were left to their own ways of using the conditional con-

structs.

Sime et al. found that participants solved more problems correctly on

their first attempt using the automated tool, but that a writing procedure
was almost as effective. The writing procedure reduced the number of

syntactic errors, which had been the major problem with the BEGIN-END
construct in earlier studies. Syntactic errors were not possible with the

automated tool. The writing procedure and automated tools helped

participants dispense with syntactic considerations quickly, so that they

could spend more time concentrating on the semantic portion of the program

(i.e., the function which was to be performed). However, once an error was

made, it was equally difficult to correct regardless of the condition.
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Thus, writing procedures and aids primarily increase the accuracy of the

initial implementation.

Arblaster, Sime, and Greenl reported on two further experiments which

extended the results for writing rules to conditionals using GOTOs. Two
groups of non-programmers, one of which had been taught the writing rules,

constructed simple algorithms using the IF-GOTO conditional. The group

trained in the writing procedures made fewer errors, semantic and syntactic,
replicating the results obtained with the nested languages.

Arblaster et al. repeated this experiment using more sophisticated

participants. They added two additional experimental conditions to those
described above, both using an IF-IFNOT conditional structure. This

conditional was written:

IF [condition 1) GOTO Li IFNOT GOTO L2

Li [process 1)

LZ [process 23

One of the two groups using this conditional was also trained in the use of

writing rules. Use of the IF-IFNOT procedure resulted in fewer syntactic

errors than observed with the IF-GOTO conditional. No differences were found

for semantic errors.

Arblaster et al. pointed out that an early version of Fortran had a

conditional format consistent with those found to be most effective in their
experiments. However, this format was lost when further revisions of the

language opted for an arithmetic IF conditional.

Shneiderman76 compared the use of the arithmetic IF:

IF [arithmetic condition] Li, L2, L3

Li [process 1)

L2 [process 2)

L3 [process 3)

L .- i ........



to the use of the logical IF:

IF [boolean condition] GOTO Li

[process 2)
Li [process 1]

in Fortran. The arithmetic IF creates the possibility of a conditional with

three branches (i.e., tests for >, =, and <). He found that novice

programmers had more difficulty comprehending the arithmetic than the

logical IF. However, no such differences were observed for more experienced

programmers, who Shneiderman believed had adjusted to translating the more

complex syntax of the arithmetic IF into their own semantic representation

of the control logic.

In a recent experiment by Richards, Green, and Manton quoted by

Green38 , the ordinary nesting of IF-THEN-ELSE conditionals was compared to

the nesting of IF-NOT-END conditionals, and both were compared to a style of

nesting in which an IF never directly follows a THEN. This last conditional

would be written:

IF [condition 1) THEN [process 1]

ELSE IF [condition 2] THEN [process 2]

ELSE IF [condition 3] THEN [process 3]

etc.

and has the appea-ance of a CASE statement. Although this arrangement is

contrary to the tenets of structured coding2 4 , some have argued that it may

be easier for programmers to understand87 .

Green reports that for different forms of comprehension questions, this

IF-THEN-ELSE-IF conditional was "never much better and sometimes much worse"

than the other forms of nested conditionals. He argues that it is important

to design computer languages so that perceptual cues such as indenting the

levels of nesting can visually display the structure of the code. These

perceptual cues can relieve the programmer of searching through the program

text, a task which is distracting, time-consuming, and error-prone.
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The extensive program of research by Sime, Green, and their colleagues

has answered important questions about the structure of conditional

statements. Their conclusions should be heeded in the design of future

languages. They demonstrated:

* the superiority of nested over branch-to-label conditionals,

* the advantage of redundant expression of controlling

conditions at the entrance to each conditional branch,

0 that the benefits of a software practice may vary with the

nature of the task, and

* that a standard procedure for generating the syntax of a

conditional statement can improve coding speed and accuracy.

Overall, these results indicate that the more visible and predictable the

control flow of a program, the easier it is to work with.

Sime, Green, and their associates have demonstrated how a preference

among conditional constructs can be reduced to an empirical question which

provides alternatives that were previously unconsidered (e.g., the

IF-NOT-END construct). Their research has investigated structured coding at

the construct level80 . The next step is to evaluate the reputed benefits of

structured coding at the modular level, considering the various structured

constructs in total.

Control Flow

Structured programming has become a catch-all term for programming

practices related to system design, programming team organization, code

reviews, configuration management, rules for program control flow, and

myriad other procedures for software development and maintenance. This

section will review only experiments related to structured coding: the

enforcement of rules for program control flow. The control structures

generally allowed under structured coding are displayed in Figure 6.

To evaluate reputed problems with the GOTO statement, Lucas and

Kaplan52 instructed 32 students to develop a file update program in PL/C,
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~BEGIN

SEOUENCE process 1

process 2
+' END

WHILE condition 00

process

REPETITION

REPEAT

process

UNTIL condition

IF condition THEN

process 1

process 2
" ENDIF

SE EC IO>, 
CASE condition OF

CASE 1: process I

CASE 2: process 2

ENOCASE

Figure 6. Constructs in structured control flow.
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and half were further instructed to avoid the use of GOTOs. However,

programers in the GOTO-less condition were not trained in using alternate
conditional constructs. Not suprisingly then, the GOTO-less group required
more runs to develop their programs. In a subsequent task, all
participants were required to make a specified modification to a structured
program. Contrary to results on the earlier task, the group which had
earlier struggled to write GOTO-less code made quicker modifications which
required less compile time and storage space.

Weissman92 also investigated the comprehension of PL/I programs written
in versions whose control flow was either 1) structured, 2) unstructured but
simple, or 3) unstructured and complex. Participants were given

comprehension quizzes and required to make modifications to the programs.
Higher performance scores were typically obtained on the structured rather
than unstructured versions, and participants reported feeling more
comfortable with structured code. Love50 subsequently found that graduate

students could comprehend programs with a simplified control flow more
easily than programs with a more complex control flow.

Recently, a series of experiments evaluating the benefits of structured
code for professional programmers was conducted in our research unit by

Sheppard, Curtis, Milliman, and Love 74 . In the first experiment
participants were asked to study a modular-sized Fortran program for 20
minutes, and then reconstruct it from memory. Three versions of control
flow performing identical functions were defined for each of nine programs.
One version was structured to be consistent with the principles of
structured coding described by Dijkstra by allowing only three basic control

constructs: linear sequence, structured selection, and structured
iteration. Because structured constructs are sometimes awkward to implement

in Fortran IV86, a more naturally structured control flow was constructed
which allowed limited deviations from strict structuring: multiple returns,

judicious backward GOTOs, and forward mid-loop exits from a DO. Finally, a
deliberately convoluted version was developed which included constructs that

had not been permitted in the structured or naturally structured versions,
such as backward exits from DO loops, arithmetic IFs, and unrestricted use
of GOTOs.
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As expected, control flow did affect performance. The convoluted

control flow was the most difficult to comprehend (Figure 7 ). The
difference in the average percent of reconstructed statements for naturally

structured and convoluted control flows was statistically significant.

Contrary to expectations, however, the strictly structured version did not

produce the best performance. A slightly (although not significantly)
greater percent of statements were recalled from naturally structured than

from strictly structured programs.

In a second experiment Sheppard et al. instructed programmers to make

specified modifications to three programs, each of which was written in the

three versions of control flow described previously. A significantly higher

percent of steps required to complete the modification was correctly imple-

mented in the structured programs when compared to convoluted ones (Figure

7). There were no differences in the times required. No statistically

significant differences appeared between the two versions of structured

control flow, although performance was slightly better on strictly rather

than naturally structured code. These results suggested that the presence

of a consistent structured discipline in the code, either strict or natural,

was beneficial and minor deviations from strict structuring did not ad-

versely affect performance.

In a third experiment Sheppard et al. decided to compare the two

versions of structured Fortran IV to Fortran 77, which contains the

IF-THEN-ELSE, DO-WHILE, and DO-UNTIL constructs. They measured how long a

programmer took to find a simple error embedded in a program. No

differences were attributable to the type of structured control flow,

replicating similar results in the first two experiments. The advantage of

structured coding appears to reside in the ability of the programmer to

develop expectations about the flow of control - expectations which are not

seriously violated by minor deviations from strict structuring.

The research reviewed here indicates that programs in which some form

of structured coding is enforced will be easier to comprehend and modify

than programs in which such coding discipline is not enforced. It is not

clear that structured coding will improve the productivity of programmers
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during implementation. Some productivity improvements may be observed if

less severe, more easily corrected errors are made using structured

constructs, as suggested in the data of Sime and his colleagues. However,

structured coding should reduce the costs of maintenance since such programs

are less psychologically complex to work with. Experiments such as these

can provide valuable guidance for decisions about an optimal mix of software

standards and practices.

Problems in Experimental Research

It is important to recognize the benefits and limitations of controlled

laboratory research. On the positive side, rigorous controls allow

experimenters to isolate the effects of experimentally manipulated factors

and identify possible cause-effect relationships in the data. On the other

hand, the limitations of controlled research restrict the generalizations

which can be made from the data. Laboratory research has an air of

artificiality, regardless of how realistic researchers make the tasks.

Several problems attendant to most current empirical validation studies
severely limit the generalizability of conclusions which can be drawn from

theml3. For instance, program sizes have frequently been restricted because

of limitations in the research situation. This problem is characteristic of

experimental research where time limitations do not allow participants to

perform experimental tasks such as the coding or design of large systems.

Also, since new factors come into play in the development of large systems
(e.g. team interactions), the magnitude of a technique's effect on project

performance may differ markedly from its effect in the laboratory.

The nature of the applications studied are often limited by the -

environments from which the programs are drawn (e.g., military systems,

commercial systems, real-time, non-real-time, etc.). Further, there is
frequently little assessment of whether results will hold up across
programming languages. It is extremely difficult to perform evaluative

research over a broad range of applications, especially when experimental
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procedures are used. Thus, empirical results should be replicated over a
series of studies on different types of programs in languages other than

Fortran.

Another problem arises with what Sackman, Erickson, and Grant72
observed to be 25 or 30 to 1 differences in performance among programmers.
This dramatic variation in performance scores can easily disguise

relationships between software characteristics and associated criteria.
That is, differences in the time or accuracy of performing some software

task can often be attributed more easily to differences among programmers
than to differences in software characteristics. Careful attention to

experimental design is required to control this problem.

If generalizations are to be made about the performance of professional
programmers, this is the population that should be studied rather than
novices. As is true in most fields, there are qualitative differences in

the problem-solving processes of experts and novices83. However, the
advantage of some techniques is the ease with which they are learned, and

novices are the appropriate population for studying such benefits. Attempts
to generalize experimental results must also be tempered by an understanding
of how real-world factors affect outcomes. Data should be collected in
actual programming environments to both validate conclusions drawn from the
laboratory and determine the influence of real-world factors.
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SUMMARY

Software wizardry becomes an engineering discipline when scientific

methods are applied to its development. The first step in applying these

methods is modeling the important constructs and processes. When these

constructs have been identified, the second step is to develop measurement

techniques so that the language of mathematics can describe relationships

among them. The testing of cause-effect relationships in a theoretical

model requires the performance of critical experiments to eliminate

alternative explanations of the phenomena. Even when possessed of

supportive experimental evidence, our sermonizing should be cautious until

we have established limits for the generalizability of our data.

There are four major points I have stressed, some by implication, in

this review. First, measurement and experimentation are complementary

processes-. The results of an experiment can be no more valid than the

measurement of the constructs investigated. The development of sound

measurement techniques is a prerequisite of good experimentation. Many

studies have elaborately defined the independent variables (e.g., the

software practice to be varied) and hastily employed a handy but poorly

developed dependent measure (criterion). Results from such experiments,

whether significant or not, are difficult to explain.

Second, results are far more impressive when they emerge from a program

of research rather than from one-shot studies. Programs of research benefit

from several advantages, one of the most important being the opportunity to

replicate findings. When a basic finding (e.g., the benefit of structured

coding) can be replicated over several different tasks (comprehension,

modification, etc.) it becomes much more convincing. A series of studies

also result in deeper explication of both the important factors governing a

process and the limits of their effects. For instance, Sime, Green, and

their colleagues identified the benefits and limitations of nested

conditionals in an extensive program of research. Performing a series of

studies also affords an opportunity to Improve measurement and experimental
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methods. Thus, the reliability and validity of results can be improved in

succeeding studies.

Third, the rigors of measurement and experimentation require serious

consideration of processes underlying software phenomena. Definitions

should not be based on popular consensus. As energy is invested in defining

constructs, a clearer picture of the process often emerges. Factors not

thought to be a part of the process may present themselves as direct effects

or limiting conditions. Alternate approaches to the techniques will also

emerge, as in Sime et als'. development of the IF-NOT-END nested condi-

tional. The frustrations of scientific investigation are often the mothers

of invention. Improved measurement techniques also provide better tools for

management information systems. More reliable and valid measurement pro-

vides greater visibility and insight into project progress and product qual-

ity.

Finally, there is no substitute for sound experimental evidence in argu-

ing the benefits of a particular software engineering practice or in compar-

ing the relative merits of several practices. Managers often vacillate be-

tween their desire for proof and their impatience with the scientific ap-

proach. However, with understanding comes the possibility of greater con-

trol over outcomes, especially if causal factors and their limitations have

been identified. The merchants of software elixirs can always quote case

studies. Yet, such experiential evidence is no replacement for experimenta-

tion, and is frequently no better than a manager's intuition.

Measurement and experimentation are not intellectual diversions. They

are the scientific foundations from which engineering disciplines continue

to be built. Scientists must be sensitive to the most important questions

they should tackle in software engineering, and should constantly reassess

research priorities to keep pace with the state-of-the-art. Software pro-

fessionals need to encourage the scientific investigation of their business

if real improvements are to be made in software productivity and quality.

The scientific study of software engineering is young, and its rate of

progress will improve as measurement techniques and experimental methods

mature.
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